

ENERGY-EFFICIENT EXHAUST AIR FILTRATION

Opportunities for improving air quality

Opportunities for improving air quality

Why should companies care for

better air quality in their factories?

- Comply to regulations / laws by the government
- Clean factory
- Safety in the factory
- Worker's health protection
- Keep the expensive machines clean and in good condition
- Improving product quality

Opportunities for improving air quality

Companies hesitate to spend money on air filters

- High investment
- Regarded as a waste of money

... but this does not take into consideration the possible big *energy savings* of modern and advanced air filtration systems!

Practical Examples

Die Casting Foundries

Example: Energy efficient exhaust air filtration in foundries

Comparison of operating costs:

We assume a foundry in Changchun / China, with 20 typical (medium and large) die casting machines

Daily operating time in hours	24 h	
Work days per week	6	
Working weeks per year	48	
Average outdoor temperature during the heating season	-4,4 °C	
Duration of the heating season in winter	28 weeks	
Desired temperature inside the plant	17 °C	

Example: energy efficient exhaust air filtration in foundries

	Method of air treatment	Description	Energy costs (annually)	CO ₂ emissions (annually)
1.	Conventional ventilation system	 regularly exchange the entire air in the factory by fresh air from the outside volume of air exchange: roughly 780,000 m³/h 	approx. 2,490,615 RMB	approx. 3,500 t
2.	Central air filtration system with heat recovery	 collecting fumes with hoods (reduction of relevant air volume) filtration of the exhaust air in combination with energy recovery by heat exchangers Air volume 215,400 m³/h 	approx. 553,750 RMB	approx. 1000 t
3.	Individual air filtration systems (1 filter per machine) and air circulation (air stays inside)	 collecting fumes with hoods highly efficient air filtration with double stage electrostatic precipitator Air circulates in the plant and has no heat loss Air volume 215,400 m³/h 	approx. 143,649 RMB	over 90 % energy saving!

Practical examples

Textile Industry: stenters

Example: energy efficient exhaust air filtration for stenters

- High efficient filtration of waste air from textile production lines
- Recovery of waste heat >50%: use for preheating of fresh air or for heating of water
- Meets strongest environmental standards
- Short amortisation time due to heat recovery

Generally, the recovery potential is very large and can result in payback period of the entire system of less than one year!

Practical examples

Food Industry: meat processing

Example: energy efficient exhaust air filters for frying lines

- □ High efficient filtration of waste air:
 - 1. Electrostatic precipitators to remove grease and fat particles
 - 2. Heat exchanger to recover the energy from the exhaust air
 - 3. UV Light for odour reduction by Photo-Oxidation
- Short amortisation time due to heat recovery
- KMA was awarded for the project with several Innovation Awards since 2011

This hybrid exhaust air filtration system uses 90% less energy compared to conventional post-combustion systems, reduces the CO_2 emissions and improves the carbon footprint of this customer.

BACKGROUND INFORMATION

 Specialist in air filtration systems - for highly effective removal of emulsion mist, fumes and sticky or oily aerosols

- Specialist in air filtration systems for highly effective removal of emulsion mist, fumes and sticky or oily aerosols
- ✓ Very low energy consumption:
 - ✓ due to low pressure losses in electrostatic precipitators

- Specialist in air filtration systems for highly effective removal of emulsion mist, fumes and sticky or oily aerosols
- ✓ Very low energy consumption:
 - ✓ due to low pressure losses in electrostatic precipitators
 - $\checkmark\,$ due to less energy consumption of fans

- Specialist in air filtration systems for highly effective removal of emulsion mist, fumes and sticky or oily aerosols
- ✓ Very low energy consumption:
 - ✓ due to low pressure losses in electrostatic precipitators
 - $\checkmark\,$ due to less energy consumption of fans
 - due to energy recovery in the customer's production plant

- Specialist in air filtration systems for highly effective removal of emulsion mist, fumes and sticky or oily aerosols
- ✓ Very low energy consumption:
 - ✓ due to low pressure losses in electrostatic precipitators
 - $\checkmark\,$ due to less energy consumption of fans
 - ✓ due to energy recovery in the customer's production plant

✓ Advanced technology improves customer's carbon footprint

www.kma-filter.de

Koenigswinter Germany

KMA Environmental Technology (Shanghai) Co., Ltd. No. 28/2 Yulv Rd. | Malu Town | Jiading District Shanghai 201801 | P.R. China

客明环境技术(上海)有限公司 上海市 | 嘉定区 | 马陆镇 | 育绿路28弄2号 邮编: 201801 p:+86 21 6167 5131 | m:+86 136 81 777 937 | <u>www.kma-filter.de</u>

